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Influence of small-scale structure on radiative transfer
and photosynthesis in vegetation canopies

Yuri Knyazikhin,1 Jörn Kranigk,2 Ranga B. Myneni,1 Oleg Panfyorov,2 and
Gode Gravenhorst2

Abstract.  The use of Beer’s law to describe the radiation regime in plant canopies is valid for a
sufficiently large volume filled densely with phytoelements. This set a limit to the scale at which
models, based on Beer’s law, can account for structural features of vegetation canopies and
provide an adequate prediction of the radiation regime. The aim of our paper is to analyze radiation
interaction in vegetation canopies and consequent photosynthetic rates at a scale at which Beer’s
law loses its validity. We use fractals to simulate the structure of vegetation canopies at this scale.
It is shown that both the radiation regime and the photosynthesis depend on the fractal dimension
of the plant stand. The development of radiative transfer models in fractal-like media as well as
measurements and modeling of fractal characteristics of trees and tree communities are essential
for better understanding and scaling of radiative transfer and photosynthetic processes from an
individual leaf to the canopy.

1.  Introduction

The structure of vegetation canopies determines the spatial
distribution of intercepted incident radiation which drives
various physiological and physical processes required for the
functioning of plants. In order to quantitatively model this
functioning, it is important to understand the interaction of
electromagnetic radiation with different types of canopy
structural organizations.

Numerous models for describing the radiation regime of
vegetation canopies have been developed since the classical
model of Monsi and Saeki [1953], which essentially is Beer-
Bouguer’s law applied to plant canopy (hereinafter referred to
as Beer’s law). A key assumption underlining this law is the
following: the number of scattering centers (e.g., leaves) in an
elementary volume is proportional to its volume. Given leaf
size, orientation, and optical properties of leaves, we can
mathematically express the law of energy conservation. From
information on the spatial distribution of such elementary
volumes, one can derive various models for describing the
radiation regime of plant stands. For example, in the turbid
medium models, the vegetation canopy is treated as a gas with
nondimensional planar scattering centers [Ross, 1981].
Alternately, modeling plants or trees in a stand as geometrical
objects (cones, ellipsoids, etc.) leads to a family of
geometrical-optical models [Nilson, 1977; Li and Strahler,
1986]. There are also hybrid canopy radiation models which
incorporate features of both these approaches [Norman and
Welles, 1983; Nilson 1992; Li et al., 1995; Myneni et al.,

1990] and account for some structural properties of tree
organization [Oker-Blom, 1991; Chen et al., 1994; Stenberg,
1995].

Recent investigations of plant morphology [de Reffye et
al., 1991] as well as small-scale measurements of geometrical
features of individual trees and tree communities [Zeide and
Pfeifer, 1991; Rigon et al., 1994; Vedyushkin, 1995] indicate
that the architecture of most vegetation canopies obeys the
laws of fractal geometry. The fractal characteristics of vege-
tation canopies depend on the structure of tree organization
and may vary between trees and tree species [Zeide and
Pfeifer, 1991]. Fractality essentially means that the relation-
ship between volume and number of phytoelements in it is
nonlinear. This property conflicts with the above mentioned
assumption of Beer’s law, and an investigation of its conse-
quence is essential for better understanding of the processes
governing the functioning of vegetation systems. Therefore
our goal is to analyze the interaction of electromagnetic ra-
diation with fractal-like canopy organizations and to demon-
strate that the radiation regime and canopy photosynthesis
depend on fractal characteristics of such media, while the
Beer’s law is insensitive to them.

Here we proceed with the suggestion that a vegetation
canopy obeys the laws of fractal geometry and for which there
is adequate empirical basis [Kranigk and Gravenhorst, 1993;
Kranigk et al., 1994]. Thus we use this geometry to reproduce
an example coniferous stand with a high level of realism
(section 2). We then formulate a strict mathematical definition
of vegetation canopy structure as well as a method for its ap-
proximation. We utilize the steady state radiative transfer
equation to simulate the three-dimensional distribution of
photosynthetically active radiation (PAR) and canopy photo-
synthesis, using the simulated fractal forest as input. The use
of transport theory presupposes that Beer’s law can be applied
to describe the radiative regime in plant canopies; but this as-
sumption is violated in the case of the modeled fractal forest
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stand. This discrepancy leads to a paradox [Kranigk, 1996]:
the more accurately the canopy structure is reproduced, the
more inaccurately the radiative regime and canopy photosyn-
thesis are estimated (section 3). Note that similar paradoxes
are already described and explained, for example, in cloud
physics, remote sensing, and microphysiological investiga-
tions [Quattrochi and Goodchild, 1997; Lovejoy and
Schetzer, 1994; Ehleringer et al., 1993]. We will follow the
methodology of these investigations. We start our analysis
with examining the problem of photon interaction with the
simplest fractal organization, the Cantor set (section 4).
Further, two patterns of canopy organization are considered in
section 5. In the first case, the phytoelements are distributed
uniformly within the canopy space, and in the second case,
their vertical distribution is specified by the distribution of the
Cantor set. For both of these patterns, we derive equations for
canopy transmittance and photosynthesis which depend on the
fractal dimension of the patterns. Finally, a discussion with
conclusions about radiation interaction with fractal-like media
are presented in section 6.

2.  Structure of the Forest Stand in Lange
Bramke

Norway spruce stand, about 50 km east of Göttingen in
the Harz Mountains, was chosen for simulation (Lange

Bramke, 51.85°N, 10.40°E). The watershed, Lange Bramke,
where ecosystem measurements were carried out, consists
mainly of two slopes with north and south orientation. The
base plot, selected for this study, was a 40 m by 40 m plot
containing 297 trees (tree density of 1856 trees per hectare)
and located on the south slope. The diameters of the tree
trunks varied from 6 to 28 cm. The stand is rather dense but
with some local gaps. Tree locations were mapped [Kranigk et
al., 1994], and total height, height-to-crown base, and crown
widths were measured on all trees in this stand.

The trees were divided into five classes with respect to the
stem diameter. A model of a Norway spruce based on fractal
geometry [Kranigk and Gravenhorst, 1993] was then used to
build a representative tree in each class. The computer-gener-
ated base plot is shown in Figure 1. In the framework of an
earlier project, 10 Norway spruce trees near the base plot were
cut in 1989 and a data bank on measured crown morphology
was assembled [Gruber et al., 1992]. These data were used to
validate the architectural and morphological properties of our
tree models. A good agreement between measured and
simulated tree morphology was reported previously [Kranigk
et al., 1994]. Thus we idealize our base plot as a forest canopy
consisting of 297 fractal trees (Figure 1). This model of plant
stand is used to generate a three-dimensional distribution of
photosynthetically active radiation and canopy photosynthesis.

Figure 1.  Computer-generated Norway spruce stand shown from different directions: front view (top left),
crown map (bottom left), and cross section (right).
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A good agreement between the field measurements and the
simulated radiation regime at a scale at which Beer’s law can
be utilized were reported previously [Kranigk, 1996;
Knyazikhin et al., 1997].

2.1.  Basic Foliage Element

A conifer needle is taken as the basic foliage element and
approximated as small cylinders. The projected needle area is
used to quantify the one-side area of the phytoelements and to
express photosynthetic rates. The leaf normal distribution is
assumed spherical. The Bi-Lambertian reflectance model
[Ross and Nilson, 1968] is used in the calculations to simulate
the reflection and transmission of needles at PAR wave-
lengths; the reflectance and transmittance coefficients were
determined from measurements (0.067 and 0.033, respec-
tively). Interaction of radiation with stems and branches is
neglected; therefore the canopy space is idealized as optically
nearly black, flat linear elements that are spherically oriented.
Their spatial distribution is generated by the fractal architec-
tural model (Figure 1).

2.2.  Canopy Structure and Its Approximation

To quantify the structure of canopy, we introduce an
indicator function χ(r) whose value is 1, if there is a needle at
the point r = (x, y, z), and 0 otherwise. The canopy structure is
defined by the indicator function. We introduce a fine spatial
mesh by dividing the base plot into Nε nonoverlapping fine
cells, ei, i = 1, 2, ..., Nε, of size ∆x = ∆y = ∆ z = ε. We ap-
proximate the canopy structure by a piece-wise constant
function χε(r): χε(r) = χε,i if r ∈ ei. Here χε,i is equal to 1, if
there is a needle within the cell ei, and 0 otherwise. It is intui-
tively clear that as ε becomes smaller, the function χε(r) ap-
proximates the canopy structure better. We call this function
χε(r) an approximation of canopy structure by cells of size ε.
Figure 2 demonstrates the three-dimensional distribution of
the function χε(r), where the cell size ε is 0.5 m. The model of
plant stand shown in Figure 1 is the limit of this function as ε
tends to zero.

In models of radiation interaction in vegetation canopies,
the leaf area density distribution function uL(r) quantifies the
canopy structure. Its value at a fine cell ei is defined as the
ratio of total one-side leaf area within this cell, ∆Si (in m2), to
the volume ε3 of this cell [Ross, 1981]; that is,

uL(r) = ∆Si/ε
3    if r∈ei.     (1)

The total one-side leaf area ∆Si in an infinitesimal cell is
comparable to ∆x∆y = ε2. Therefore the leaf area distribution
function becomes arbitrarily large as ε tends to zero. This
property sets a limit to the applicability of the classical
approach for characterizing the vegetation canopy structure:
the cell size should be so great that leaves in it can be treated
as infinitesimal planar elements. The heterogeneity of the
entire canopy is characterized by variations in leaf area in
these cells.

The second conceptual limitation in classical theory is that
the leaves are assumed distributed such that there is no mutual
shading along any direction. It means that each cell is
idealized as a turbid medium filled with infinitesimal planar
elements, uniformly distributed within the cell, and oriented
in all possible directions. The leaf area density in the cell
depends on foliage clumping, gap distribution, etc. This
assumption can be realized only if the definition of the leaf
area density distribution function can be formulated for
arbitrary small cells.

Under these assumptions, Beer’s law can be utilized to
describe radiation attenuation. The theory allows us to extend
its utilization from a sufficiently big cell to the entire canopy
[Ross, 1981]. The underlying assumptions of Beer’s law
predetermine a scale at which this approach provides an
adequate prediction. There are scales which account for
spatial distribution of trees, tree shape, vertical distribution of
foliage within crowns, and its clumping [Knyazikhin et al.,
1997]. For photosynthesis calculations, however, these scales
may be rather large. Canopy photosynthesis depends on the
distribution of radiation on foliage elements and the
photosynthetic response of the elements. Recent models are
capable of reproducing the canopy architecture with a high
level of realism, from leaf to canopy scale (for example,
Figure 1). The classical transport theory, however, is not
useful for predicting the radiation regime at the leaf level. To
demonstrate this, we evaluate canopy photosynthesis for two
values of the cell size using the classical approach.

Figure 2.  Three-dimensional distribution of foliated cells.
The canopy space is limited by the slope and a plane parallel
to the slope at a height of the tallest tree. This distribution is
described by the function χε(r) whose value is 1 (a fine cell is
plotted), if there is a needle in the cell around the space point
r=(x,y,z), and 0 otherwise (a fine cell is not plotted). The size
ε of the fine cell is 0.5 m in this plot. Tending the cell size to
zero, this plot converges to the one shown in Figure 1.
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3. Canopy Photosynthesis Evaluated With
Beer’s Law

Let us consider two approximations, χ0.5(r) and χ0.25(r), of
simulated base plot with cells of size ε = 0.5 m and ε=0.25 m.
We use (1) to derive the three-dimensional distribution of leaf
area density uL(r) for these two canopies. The leaf area density
of a cell from the intersection of trees is given by the sum of
leaf area densities of the intersecting cells. Thus the
approximations have the same leaf area as the base plot.
Figure 2 illustrates the three-dimensional distribution of the
function χ0.5(r). The histograms of the frequency ν(u) of leaf
area per foliated cell u for the two approximations are shown
in Figure 3. Cells where u=0 make up about 77% (ε=0.5 m)
and 78% (ε = 0.25 m) of the total number of cells. The
volume of the parallelepiped in which the tree crowns are
located makes up about 27% of the canopy space, which is
close to the volume of all foliated cells. Thus the base plot is
rather dense but with some local gaps. The average one-side
leaf area per unit volume increases from about 0.5 m2/m3 to
about 0.6 m2/m3 when the cell size is halved. Cells of size
0.25 m result in 1.6 times more cells with high foliage
densities (u > 8 m2/m3) than cells of size 0.5 m (Figure 3).
These cells are about 1.1% (ε = 0.5 m) and 1.8% (ε = 0.25 m)

of the total canopy space. The distribution of cells with low
foliage densities (u < 8 m2/m3) is approximately the same.

We used the steady state radiative transfer equation
[Knyazikhin et al., 1997] to simulate the radiation field in the
base plot. Its solution is the intensity I(r,Ω) of PAR. The PAR
intensity was evaluated in 80 directions distributed over the
unit sphere according to Carlson’s quadrature rule [Carlson,
1970]. Within the cell about r, a photosynthesis-radiation re-
sponse Pleaf(r,ΩL) of leaf area with unit normal ΩL directed
outward from its upper surface was simulated by a three-pa-
rameter equation [Prioul and Chartier, 1977]:

θPleaf
2(r,ΩL) - (αFL + Pmax)Pleaf(r,ΩL) + αFLPmax = 0,

where Pleaf(r,ΩL), α, Pmax are gross photosynthesis, apparent
quantum yield, and maximum gross photosynthesis at light
saturation, respectively; θ is the convexity parameter, and FL

is the PAR energy flux on the leaf area with unit normal ΩL

within the cell about r:

∫ ΩΩ•ΩΩ=
π4

),( drIF LL .

Canopy photosynthesis Pcan at a given time can be expressed
as
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where V is the canopy space and Pcell(r) is the photosynthetic
response of unit leaf area within the cell,

∫
+

ΩΩΩ=
π

π
2

leafcell )(
2

1
),()( LLL dgrPrP .

Here g(ΩL) is the probability density of leaf normal
distribution over the upper hemisphere 2π+, which is assumed
spherical distribution, i.e., g(ΩL)=1.

Thus we define canopy photosynthesis at a given time as
the sum of photosynthetic responses of individual cells. It
seems clear that as cell size ε is taken smaller and smaller, (2)
should account for the photosynthetic response of individual
leaves more and more accurately. This, however, is not true.

Figure 4 demonstrates daily variation in canopy photo-
synthesis on a cloudy (September 16, 1992) and a clear sunny
(September 27, 1992) day for two example canopies. The
average difference between the daily canopy photosynthesis
from the two canopy approximations of the same base plot is
about 14% on a cloudy day versus 9% on a sunny day. In both
cases the diurnal canopy photosynthesis decreased with
decreasing cell size.

Let us analyze the behavior of canopy photosynthesis as
the cell size ε tends to zero. The photosynthetic response
Pcell(r) of unit leaf area may range between zero and its light-
saturation rate; that is, 0 ≤ Pcell(r) ≤ Pmax. We divide this

interval into m subintervals by points Pk: 0 = P0 < P1 < ... <
Pm-1 < Pm = Pmax. Let nε(Pj) be the number of foliated cells of
size ε in which Pj-1 ≤ Pcell(r) < Pj. We denote by Nf,ε the total
number of foliated cells of size ε, i.e., the sum of all nε(Pj).
The total one-side leaf area u(r)dr in a sufficiently small cell
is comparable to ε2; that is, u(r)dr = const ε2. We can now
rewrite (2) as

∑
=
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m
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2
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Taking into account the inequalities Pj ≤ Pmax, j = 1, 2,  ..., m,
it is possible to obtain
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which does not depend on m.
Figure 5 demonstrates the distribution of points (ln(1/ε),

ln(Nf,ε)) for the largest tree in the simulated base plot; that is,
Nf,ε is the total number of foliated cells containing needles of
the tree of maximum diameter. These points are well
approximated by the linear function ln(Nf,ε) = 1.737 ln(1/ε) +
ln(227.9) with respect to ln(1/ε). It follows from this equation
that Nf,ε = 227.9/ε1,737. Similar relationships are valid for all
trees in our base plot, which can be expressed in the following
form:

iD
iif CN −= εε ,, ,  i = 1, 2, ..., 5.     (4)
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Here Nf,ε,i is the number of foliated cells of size ε containing
needles of the ith representative of the tree class; Ci is a
constant that depends on the representative tree, and Di is the
fractal dimension of the foliage set defined as [Barnsley,
1993]

ε
ε

ε /1ln

ln
lim

,,

0

if
i

N
D

→
= .     (5)

The fractal dimension quantifies the internal structure of
tree organization and may vary between trees and tree species
[Zeide and Pfeifer, 1991]. Because needles are approximated
as thin cylinders, which are close to a small straight line, the
fractal dimension of our simulated trees is less then 2; that is,
Di < 2. Substituting (4) in (3) and noting that Nf,ε is the sum of
Nf,ε,i, we can show that
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Here C = max{C1, C2, ... ,C5}, D = max{D1,D2,...,D5}. Since
2-D > 0, it follows that Pcan becomes arbitrarily small as ε
tends to zero! Note that no suggestions about radiation model
and photosynthesis equation are required to derive the last
inequality. It means that such a degeneration holds true for
any radiation-photosynthesis model using fractal model of
canopy structure.

Thus we obtain the following result: the more accurately
canopy structure is reproduced, the more inaccurately canopy
photosynthesis is evaluated. We come to the same result when
we evaluate the total PAR energy incident on leaves in the
canopy. Two reasons may be given for such discrepancies. On
the one hand, the number of foliage elements in an elementary
volume was assumed proportional to this volume. This allows
us to quantify the canopy structure in terms of leaf area
density distribution function u(r) which underlies the use of
Beer’s law in radiation-photosynthesis calculations. On the
other hand, we used this method in a canopy in which the
relationship between the elementary volume and the number
of foliage elements in it was nonlinear (equation (4)). If the
canopy structure is similar to a fractal-like medium, Beer’s
law cannot be applied to describe light interaction in forest
canopies. An essential revision of existing modeling
techniques is needed to correctly simulate such processes in
forest canopies. We will attempt to do this next, when we
consider radiation interaction in a medium described by the
simplest fractal set, the Cantor set.

4. The Cantor Set

We consider the Cantor set that can be obtained by the
following iterative procedure. A unit interval [0,1] is divided
into three equal subintervals, and the middle subinterval is
removed. This transformation is then applied to each of the
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Figure 5.  Dependence of ln(Nf,ε) on ln(1/ε). The points (ln(1/ε), ln(Nf,ε)) are distributed along the linear
function with respect to ln(1/ε): 1.737 ln(1/ε) + ln(227.9).



KNYAZIKHIN ET AL .: RADIATION AND PHOTOSYNTHESIS IN FRACTALS

6139

remaining two intervals (Figure 6). By repeating this trans-
formation n times, we obtain the nth approximation of the
Cantor set. Figure 6 demonstrates four successive iterations,

each consisting of Mε,C = 2n intervals of size ε = 1/3n (n = 0, 1,
2, 3 ,4). As the number of iterations tend to infinity, these
intervals degenerate into points. A set of these points is said to
be the Cantor set or Cantor’s points iterated from the interval
[0,1]. In section 5, the Cantor points will be interpreted as
foliage elements encountered along the photon path; in this
section we discuss some properties of the Cantor set necessary
for the discussion in section 5.

We begin with the derivation of a relative distribution
function of Cantor’s points. Let F(s) be the portion of these
points in the interval [0, s). Clearly, F(0) = 0 and F(1)=1. Be-
cause the intervals [0,1/3) and [2/3,1) are transformed by the
same algorithm, each of them therefore contains an equal
number of Cantor’s points (Figure 6). In the interval [1/3,2/3),
there are no Cantor points. Therefore we assign the value 1/2
to the function F(s) when 1/3 ≤ s < 2/3. The intervals [0,1/9),
[2/9,1/3), [2/3,7/9), and [8/9,1) are also subjected to the trans-
formation by this algorithm, and so each of them contains an
equal number of points from the Cantor set. Since the inter-
vals [1/9,2/9) and [7/9,8/9) have no Cantor points, the func-
tion F(s) is constant on these intervals, taking on the values
1/4 and 3/4, respectively. By repeating this procedure n times,
we obtain the nth approximation of the desired distribution
function. The eighth iteration of F(x) is shown in Figure 7. As
the number of iterations tend to infinity, we can assign a value
to the function F(s) at any point in the interval [0,1].

The relative distribution function of Cantor’s points has
two important properties. On the one hand, it is a continuous
function. On the other hand, it is a piece-wise constant func-
tion that can take new values only at Cantor’s points. A
function satisfying these two properties is defined to be a

Figure 6.  The Cantor set (top) which is obtained by
iteratively removing the middle one-third section of the
“black“ intervals. We describe a distribution of points of the
Cantor set in a relative unit taking the total Cantor set as 1
(bottom).
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singular function [Kolmogorov, 1950].
We use the symbol χC(s) to denote the indicator function

of the Cantor set; that is, χC(s) takes on the value 1, if there is
a point of the Cantor set at the point s (0 ≤ s ≤ 1), and 0
otherwise. We divide the interval 0 ≤ s ≤ 1 into Mε equal
subintervals, ei = [si-1,si), by points si = (i-1)ε, i = 1,2,...,Mε,
and approximate the indicator function χC(s) by a piece-wise
constant function χC

ε(s); that is, χC
ε(s) = χC

ε,i if si-1 ≤ s < si,
i=1, 2, ..., Mε. Here χC

ε,i is equal to 1, if there is a point of the
Cantor set in the interval [si-1,si) and 0 otherwise. The length,
∆s (in relative units), of each interval is ∆s = ε. The function
χε(s) converges to the indicator function, as ε tends to zero.
Let Mε,C be the number of intervals containing points of the
Cantor set. Note that if ε = 1/3n, then Mε,C = 2n (Figure 6). It
follows from (5) that the fractal dimension D of the Cantor set
is D = ln 2/ln 3 ≈ 0.63.

Let us consider the nth approximation of the Cantor set
which can be explicitly described by the function χC

ε(s). We
approximate the distribution function of Cantor’s points by a
piece-wise constant function Fε(s): Fε(s) = Fε,i if si-1 ≤ s < si, i=
1, 2, ..., Mε, where Fε,i is a portion of Cantor’s points in the
interval [0, si); that is,
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It may be shown that this function converges to F(s) as ε tends
to zero. The function Fε(s) can only be evaluated when the
values of F(s) are specified at Mε + 1 discrete values of its
argument. This information, however, may often be unknown
in practical situation; for instance, as when one deals with a
fractal set like the one used to simulate the tree stand
described earlier. The question then arises of whether or not
the distribution function of Cantor’s points can be approached
in terms of χC

ε(s).
Let us examine the convergence process, Fε(s) → F(s),

when ε takes on values 1/3n, n = 1, 2, ..., . In this case we have
(compare Figure 6)
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Taking into account the following relationship between the
fractal dimension D = ln 2/ln 3 = ln3 2 and the length
∆s=ε =1/3n (in relative units) of the interval [sk-1,sk),

( )
nn

Ds
2

1

3

1
2log3

=



=∆ ,

we can rewrite (7) as

dFε(sk) = χC
ε(s) (∆s)D,    D = log3 2 ≈ 0.63 .     (8)

This equation shows that the relation between the length of an
elementary interval and the relative number of Cantor’s points
in this interval is nonlinear. Substituting (8) into (6), we can
express Fε(s) in terms of the indicator function for the nth
approximation of the Cantor set
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It will be recalled that this equality, however, is valid only
under a special choice of ε, i.e., when ε = 1/3n. Because the
function Fε(s) converges to F(s), no matter how ε tends to
zero, (9) is approximately satisfied for ε other than 1/3n. This
formula therefore provides a means of approaching the
relative distribution of Cantor’s points, using the nth
approximation of the Cantor set and its indicator function as
input variables. Indeed, it follows from (9) that the portion of
Cantor’s points in the interval [0,si) is the sum of power of the
lengths of intervals containing the Cantor points. The value of
power coincides with the fractal dimension of the Cantor set.

Equation (9) allows us to introduce a generalized length to
measure Cantor’s points. Let L be a length of the interval
[0,1] expressed in a metric system (e.g., in meters). A length
of each subinterval [si-1,si) is ∆sL in this system. It follows
from (9) that

F(s L) = F(s) LD;   (10)

that is, the portion F(s) (dimensionless) of Cantor’s points in
the interval [0,s) of the length sL has a generalized length
F(s)LD (e.g., in mD). Thus the Cantor set iterated from the in-
terval [0,1] of length L = 1 m can be assigned the generalized
length of 1 mD, where D = log3 2 ≈ 0.63 is the fractal
dimension of the Cantor set. We call this set a unit Cantor set.
Therefore if a Cantor set is iterated from an interval of length
H, its total generalized length is HD. The generalized length of
its portion F(s) in the interval [0, s H], 0≤ s<1, of length sH is
F(s) HD (e.g., in mD). From this viewpoint, (9) has a simple
interpretation. Indeed, the nth approximation of our Cantor set
(e.g., shown in Figure 6) consists of Cantor subsets iterated
from subintervals [si-1,si), each of them of length ∆s. Equation
(9) shows that the generalized length of the whole Cantor set
is the sum of the generalized lengths of these Cantor subsets.

The result formulated in terms of (9) can now be utilized
to specify a distribution function of fractal-like sets, other
than the Cantor set, for example, of the fractal sets shown in
Figure 1. This relationship is a special case of the Lebesgue
theory of integration known as Lebesgue integral with respect
to the Hausdorf measure [Barnsley, 1993]. The following
result of this theory can be used to derive the relative leaf
distribution function for our fractal tree model.

Consider a function lε(p) (in mp) of the positive variable p
defined as
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1

,)( ,    p > 0 (in mp),     (11)

where Nε and χε,i are as in section 2.3. Let l(p) be the limit of
lε(p) as the cell size ε tends to zero. This function can only
take on three values: infinity if 0 < p < D, a nonzero finite
value if p = D, and zero if p > D [Barnsley, 1993]. A point
p=D at which the jump to infinity occurs is defined to be the
Hausdorf dimension. In many practically important cases (and
our fractal tree models are among them), the fractal dimension
(5) coincides with the Hausdorf dimension [Barnsley, 1993].
Therefore knowing the fractal dimension of our trees, we can
approach its relative foliage area distribution function as

∑= Dr
Dl

DVF εχε
ε

ε )(
)(

1
),(    (dimensionless),  (12)

where V is a domain in the tree crown, and the summation is
performed over all cells in V.

This result allows us to generalize the concept of length,
surface, and volume. Indeed, the value εD can be interpreted
as a specific volume (area, or length) of the fine cell and the
value of l(p) at the point p = D at which the jump to infinity
occurs as the generalized volume (area, or length) of a set
consisting of these cells. For example, the unit Cantor set has
the generalized "length" of l(0.63) = 1 m0.63. It follows from
(4) and from Figure 5 that the value of l(1.737) = 227.9 (in
m1.737) can now be assigned to the crown volume of our larg-
est fractal tree. It can be shown that the fractal dimension of
the tree crown space simulated by a homogeneous geometrical
figure (e.g., a cylinder, or a cone) is 3. In this case, the crown
volume in true sense and the generalized volume l(3) (in m3)
are the same. The Hausdorf integration technique therefore in
no way conflicts with the one we usually use. On the other
hand, the scope of integration is extended since there exist
functions integrable in the Hausdorf sense (e.g., the indicator
functions of the Cantor set and of our fractal trees) for which
the classical definition of integral, as demonstrated in the
previous section, fails.

It is customary to write (12) and its limit (as ε tends zero)
in the following generalized form:

∑= )()(
)(

1
),( drr

Dl
DVF µχε

ε
ε ,

∫=
V

drr
Dl

DVF )()(
)(

1
),( µχ ,                  (13)

where µ(dr) is the Hausdorf measure (or a specific volume) of
an elementary volume (fine cell, or area, or length) about the
point r. For the examples mentioned above, this measure is
expressed as µ(dr) = (ds)0.63 = ε0.63 for the Cantor set; µ(dr) =
(dxdydz)1.737/3 = ε1.737 for the tree crown space of the largest
fractal tree class, and µ(dr) = dxdydz = ε3 for tree crowns
simulated by geometrical figures. Let V = ei in (13), and as the
size ε of the cell ei about r tends to zero, we obtain a relative

density distribution function Φ(r,D) of the fractal-like set at r
as

)(
)(

1),(
lim

)(

),(
lim),(

00
r

Dl
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ε

ε
ε

ε
===Φ

→→
(in m-d);

that is, a portion of a fractal-like set, per elementary volume,
about the space point r is proportional to the indicator
function of this set.

This approach allows us to formulate the concept of gen-
eralized leaf area density distribution function as follows:
Consider an elementary volume ei about r in the tree crown.
Given the total one-side leaf area S (in m2) of the tree crown,
the leaf area density distribution function u(r,D) can be de-
termined as the ratio of the one-side leaf area S Φ(r,D) µ(dr)
in the elementary volume about r to the generalized volume
µ(dr) of this elementary volume; that is,

)(
)(

),(),( r
Dl

S
DrSDru χ=Φ=    (in m2/md);       (14)

that is, this function is proportional to the indicator function
of the tree crown. Note that the leaf area density distribution
function depends on the fractal dimension D of tree crown
which is determined by within-crown leaf organization and
may vary between trees [Zeide and Pfeifer, 1991].

Thus the Hausdorf integration technique gives us a
possibility to express canopy structure both quantitatively and
qualitatively. Note that we have outlined this approach
without precise mathematical argumentation. It refers, for
example, to (12); in the general case the fractal dimension of a
fractal set bounded by the domain V may differ from one
derived from (11) and hence F(V,D) may not be a meaningful
function. The problem of specifying a strict mathematical de-
scription of the whole approach and of incorporating it into a
particular research theme is the topic of another investigation.

5. Radiative Transfer and Photosynthesis
in Turbid and Fractal Media

We consider the following model of fractal canopy
organization: The canopy space is a parallelepiped of height H
(in meters) and basal area σ (in square meters). The canopy
consists of horizontal planes with optically black, flat linear
elements, horizontally oriented and uniformly distributed. The
leaf area density of planes (the total one-side leaf area in the
plane per unit plane area) is assumed constant. Further, there
are no leaves in between these planes. Two different patterns
of vertical distribution of the planes will be analyzed here.

Let the canopy be illuminated from above by a beam
perpendicular to the horizontal plane h = 0 (Figure 8). We
assume no mutual shading between leaves when viewed along
the beam path. Average radiation attenuation along the beam
path can be described by the following differential equation:

dI = -I(h) dS(h),   I(0) = I0  ,              (15)
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where I(h) is the intensity of the light beam at the depth h;
S(h) is the cumulative leaf area index at h (total one-side leaf
area above h per unit ground area, dimensionless), and I0 is
the intensity of incident radiation. Its solution is

I(h) = I0 exp(- S(h)).                  (16)

Assuming an invariant photosynthetic response Pleaf of a
foliage surface element as well as taking into account (15) and
(16), the rate of canopy photosynthesis, Pc can be formally
expressed as [Oker-Blom et al., 1991]

∫∫∫ ===
1

)(

0leaf

)(

leaf

1

0

leafc )()()())((

HT

I

HI
T

dT
TIP

I

dI
IPhdShIPP

o

,

  (17)

where  T(h)  is the canopy transmittance,  T(h) = I(h)/I0 =
exp[-S(h)].

Thus the canopy transmittance and photosynthesis can be
evaluated when the cumulative leaf area index is specified.
We derive this variable for two different vertical distributions
of the above mentioned horizontal planes. In the first case, the
foliated planes are assumed to be uniformly distributed along
the vertical within a layer [0,H]. We term this canopy
organization a turbid medium. In the second case, the vertical
distribution of the foliated planes in [0,H] coincides with the
distribution of Cantor’s points iterated from the interval [0,H]
(Figure 8). We call this canopy a Cantor medium.

Our analysis will be performed in terms of the generalized
volume discussed previously. In order to derive this variable,
we introduce a fine spatial mesh as in section 2.2. Note that

the total number of fine cells Nε and the size ε of an individual
cell are related by the following equation:

ε

σε
N

H=3 ,   (18)

where Hσ is the volume (in cubic meters) of our canopy
space. This equation has a simple interpretation: the volume
of an individual cell is the ratio of the volume of our canopy
to the total number of cells constituting the canopy space.

5.1. Turbid medium.

Cells with foliage are uniformly distributed within the
canopy space and therefore the indicator function takes on the
value 1 at any space point within the canopy space. Taking
into account (18), we can rewrite (11) as

3
3

)( −=== ppp H
H

Npl εσε
ε

σεεε .

It is clear that lε(p) takes a finite value; that is, Hσ (in cubic
meters), if and only if p = 3. The volume, in the true sense,
therefore coincides with the volume of leaves. Let LAIB be the
leaf area index (the total one-side leaf area in the canopy
space per unit ground area). It follows from (14) that the leaf
area density distribution function is

H

LAI

H

LAI

l

LAI
ru BBB ===

σ
σσ

)3(
)3,( (in m-1).

Thus the cumulative leaf area index SB(h) for the turbid
medium has the following form:

)1,()( sFLAI
H

h
LAIhS BBB == .              (19)

Here F(s,1) = s is the relative foliage distribution function for
the turbid medium; s = h/H is the length of the interval [0,h)
in relative units. Note that the fractal dimension of the whole
interval [0,H], compare (5) and (18), is 1. To emphasize this,
we include this value in the argument list of the distribution
function.

5.2. Cantor Medium

The total number of horizontal layers of length ε contain-
ing the foliated planes coincides with number, Mε,C, of inter-
vals of the same length, ε, along the vertical axis containing
Cantor’s points (Figure 6). Consider the situation when the
size ε of a cell can take on the values H/3n, n = 1, 2, ... , only.
In this case, we have (Figure 8) Mε,C = 2n = (3n)D = (H/ε)D,
where D = log3 2 is the fractal dimension of the Cantor set.
Because leaves are uniformly distributed over the horizontal
planes, each foliated layer contains σ/ε2 cells. Thus the total
number of foliated cells Nε,f can be expressed as Nε,f =
(σ/ε2)(H/ε)D = σHDε-(2+D). It follows from this relationship that
(11) can be rewritten as

DpDp
f HNpl −−== 2

,)( εσεεε    (in mp).

Figure 8.  Horizontally homogeneous fractal model of canopy
organization. The canopy space consists of horizontal planes
with plane leaves, horizontally oriented, and uniformly
distributed. The vertical distribution of these foliated planes
coincides with distribution of Cantor’s points along the OZ
axis. Three successive iterations of our fractal model of
canopy organization.

a b
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This function can take a finite value, i.e., σHD (in m2+D), if
and only if p = 2 + D. Therefore the generalized volume of
leaves in our canopy space is

lε(2+D) = σHD (in m2+D).

Because the function lε(2+D) converges to l(2+D), no matter
how ε tends to zero, this result does not depend on a specific
choice for the size of the cell.

Let LAIC be the leaf area index of the Cantor medium. It
follows from (14) that the generalized leaf area density
distribution function (in m-D) has the following form:

)()()(
)2(

)2,( h
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LAI
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r

Dl
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σ
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χ
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==
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=+

Because leaves are uniformly distributed over horizontal
planes, the indicator function of the Cantor medium does not
depend on the horizontal coordinates. Its vertical dependence
coincides with the indicator function of the Cantor set iterated
from the interval [0,H]. Taking into account (8) and (10), one
can derive the cumulative leaf area index SC(h) of the Cantor
medium

(20)                                   ),()(
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where µ(dh) is the Hausdorf measure of an elementary
interval [h,h+dh); that is, µ(dh) = (dh)D (in mD); F(s,D) is the
relative distribution function of the unit Cantor set introduced
in section 4 (we include the fractal dimension D in its
argument list here), and s = h/H is the length of the interval
[0,h) in relative units. It follows from (20) and (10) that the
function SC(h) coincides with the distribution function of
Cantor’s points iterated from the interval [0,1] of the length
LAIC

1/D expressed in relative units LAIC
1/D h/H. Therefore if the

leaf area index of the turbid medium is taken as the length of
the interval [0,1] in relative units L=LAIB  h/H, then the leaf
area index for the Cantor medium can be expressed as

LAIC = (LAIB)D ,

where D is the fractal dimension of the Cantor set. This
equation has a simple interpretation: removing the foliated
planes from the turbid medium by means of the iterative
procedure shown in Figure 8 involves the alteration in the leaf
area index from the value of LAIB (for the turbid medium) to
(LAIB)D (for the Cantor medium).

The canopy transmittance T(h,D) of the media takes the
form

T(h,D) = exp(- S(h)) = exp(-LAIB
D F(s,D)),          (21)

where F(s,D) is the relative plane distribution function for the
layer [0,H]. Inserting this in (17), we obtain an expression for
canopy photosynthesis
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TIPDP .                (22)

Thus if the turbid medium is replaced by the Cantor medium,
canopy transmittance and photosynthesis will change from
T(h,1) and P(1) to T(h,log23) and P(log32).

It follows from (21) that the relationship between leaf area
index and transmittance of a canopy can be expressed in the
form of Beer’s law, irrespective of the internal organization of
the canopy; that is,

T(H,D) = exp(-LAI),                  (23)

where LAI =  LAIB for the turbid medium and LAI =  LAIC for
the Cantor medium. Therefore in the case of horizontally ho-
mogeneous media, it follows that canopy transmittance can be
predicted by Beer’s law irrespective of the canopy organiza-
tion. This, however, leads to erroneous estimation of leaf area
index when the Beer’s law is inverted. Indeed, one can meas-
ure canopy transmittance without making any assumption
about canopy organization. The leaf area index thus derived
from (23) does not depend on such assumptions too. In using
this technique therefore, the important thing is to recognize
the canopy organization to which the derived LAI refers. Let
us suppose that the leaf area index derived corresponds to the
Cantor medium. In this case, its nth approximation contains 2n

foliated layers of the height ε = H/3n each (compared to turbid
medium which contains 3n foliated layers of the height ε =
H/3n each). Let us remove all nonfoliated layers and change
each foliated layer by powering its height by D = log3 2. As a
result of this transformation, the new medium has 2n foliated
layers of the height ε = HD/2n each. These layers are now uni-
formly distributed along the vertical within the layer [0,HD].
Thus the Cantor medium of depth H and leaf area index LAIC
corresponds to the turbid medium of depth HD and the same
leaf area index LAIC. Therefore if we want to treat this Cantor
medium of depth H as a turbid medium of the same depth,
then we should assign the value LAI1/D to its leaf area index.
Note that the same result was derived by analyzing (19) and
(20). Such a correction of measured LAI is required before its
use as input for any canopy radiation model based on Beer’s
law.

Neglecting internal canopy organization also leads to
errors in estimated canopy photosynthesis. The Cantor canopy
is equivalent to the turbid medium of LAIC

1/D. Thus the Cantor
medium which contains leaves of area σ LAIC  takes up as
much CO2 as the turbid medium with leaves of area σ LAIC

1/D.
This follows from (22) also.

6. Summary

The architecture of a vegetation canopy is the most
important factor determining the canopy radiation regime. All
canopy radiation models therefore require the probability dis-
tribution function of leaf area in order to specify statistical
features of canopy architecture. In probability theory
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[Kolmogorov, 1950], any distribution function F can be rep-
resented as a sum of three components: F =  αC+βJ+γS where
α, β, and γ take on the values 0 or 1 depending on whether or
not the corresponding component is represented. The first
summand C is the continuous probability distribution
function. The uniform, Gaussian, gamma, etc., distributions
are examples of this component. The second summand J is the
jump function. This is a piece-wise constant function which
describes random discrete variables taking on finite or
countably infinite number of values. The third summand S is
the singular function. It is a continuous, nonconstant function
whose derivative is zero almost everywhere.

Previous canopy radiation models used the first and
second components to describe the structure of vegetation
canopies which allows us to mathematically express radiation
attenuation by Beer’s law. This predetermines the scale at
which it provides an adequate prediction. This is the land-
scape scale, which can account for spatial distribution of
trees, tree shape, the mean vertical or/and horizontal distribu-
tions of foliage within crowns, clumping, and mean leaf size,
but which ignores small-scale structural features of canopy
organization. In the present paper, we considered examples of
fractal-like canopy organizations, in which the spatial distri-
bution of phytoelements is described by singular probability
distribution functions. Any attempt to use continuous and
discrete distribution functions leads to degeneration in the
description of canopy structure. The use of the singular distri-
bution function therefore is needed in order to derive the
distribution of phytoelements. However, one requires
information about fractal characteristics of the vegetation
canopy to do this. The singular distribution function assumes
that the foliage elements in an elementary volume are uni-
formly distributed and generally obtained by powering a unit
elementary volume by a fractal dimension. Because photo-
synthesis in an elementary volume depends on the distribution
of radiation on foliage elements, this property of fractal-like
canopy organization influences photosynthesis of the entire
vegetation canopy. The fractal dimension depends on the
structure of tree organization and may vary between trees and
tree species. Thus canopy radiation models based on continu-
ous and discrete distribution functions are unable to account
for such features of canopy organization. The use of the
singular distribution function in canopy radiation models,
however, requires information on fractal characteristics of
trees and tree communities. Their measurement and modeling
therefore requires special attention in order to extend the ap-
plicability of Beer’s law.
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